3.102 \(\int \sec (c+d x) (a+a \sec (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=59 \[ \frac{8 a^2 \tan (c+d x)}{3 d \sqrt{a \sec (c+d x)+a}}+\frac{2 a \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{3 d} \]

[Out]

(8*a^2*Tan[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0614329, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {3793, 3792} \[ \frac{8 a^2 \tan (c+d x)}{3 d \sqrt{a \sec (c+d x)+a}}+\frac{2 a \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(8*a^2*Tan[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 3793

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*Cot[e + f*x]*(a
 + b*Csc[e + f*x])^(m - 1))/(f*m), x] + Dist[(a*(2*m - 1))/m, Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1), x
], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] && IntegerQ[2*m]

Rule 3792

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*b*Cot[e + f*x])/
(f*Sqrt[a + b*Csc[e + f*x]]), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \sec (c+d x) (a+a \sec (c+d x))^{3/2} \, dx &=\frac{2 a \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{3 d}+\frac{1}{3} (4 a) \int \sec (c+d x) \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{8 a^2 \tan (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}+\frac{2 a \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.0875366, size = 38, normalized size = 0.64 \[ \frac{2 a^2 \tan (c+d x) (\sec (c+d x)+5)}{3 d \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*a^2*(5 + Sec[c + d*x])*Tan[c + d*x])/(3*d*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 0.125, size = 63, normalized size = 1.1 \begin{align*} -{\frac{2\,a \left ( 5\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-4\,\cos \left ( dx+c \right ) -1 \right ) }{3\,d\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(a+a*sec(d*x+c))^(3/2),x)

[Out]

-2/3/d*a*(5*cos(d*x+c)^2-4*cos(d*x+c)-1)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/sin(d*x+c)/cos(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sec \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^(3/2)*sec(d*x + c), x)

________________________________________________________________________________________

Fricas [A]  time = 1.68546, size = 158, normalized size = 2.68 \begin{align*} \frac{2 \,{\left (5 \, a \cos \left (d x + c\right ) + a\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

2/3*(5*a*cos(d*x + c) + a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c)^2 + d*cos(d*x
+ c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}} \sec{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((a*(sec(c + d*x) + 1))**(3/2)*sec(c + d*x), x)

________________________________________________________________________________________

Giac [A]  time = 4.81613, size = 126, normalized size = 2.14 \begin{align*} \frac{4 \,{\left (2 \, \sqrt{2} a^{3} \mathrm{sgn}\left (\cos \left (d x + c\right )\right ) \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 3 \, \sqrt{2} a^{3} \mathrm{sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{3 \,{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a\right )} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

4/3*(2*sqrt(2)*a^3*sgn(cos(d*x + c))*tan(1/2*d*x + 1/2*c)^2 - 3*sqrt(2)*a^3*sgn(cos(d*x + c)))*tan(1/2*d*x + 1
/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*d)